9 D ec 1 99 7 Cycle Indices for the Finite Classical

نویسنده

  • Jason Fulman
چکیده

This paper deenes and develops cycle indices for the nite classical groups. These tools are then applied to study properties of a random matrix chosen uniformly from one of these groups. Properties studied by this technique will include semisimplicity, regularity, regular semisimplicity, the characteristic polynomial, number of Jordan blocks, and average order of a matrix.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

9 D ec 1 99 7 Cycle Indices for the Finite Classical Groups By Jason

The Polya cycle index has been a key tool in understanding what a typical permutation π ∈ Sn ”looks like”. It is useful for studying properties of a permutation which depend only on its cycle structure. Here are some examples of theorems which can be proved using the cycle index. Lloyd and Shepp [25] showed that for any i < ∞, the joint distribution of (a1(π), · · · , ai(π)) for π chosen unifor...

متن کامل

ua nt - p h / 99 12 11 5 v 1 2 8 D ec 1 99 9 The δ - deformation of the Fock space

A deformation of the Fock space based on the finite difference replacement for the derivative is introduced. The deformation parameter is related to the dimension of the finite analogue of the Fock space.

متن کامل

D ec 1 99 5 An Explicit Formula for the Number of Solutions of X 2 = 0 in Triangular Matrices Over a Finite Field

X iv :m at h/ 95 12 22 4v 1 [ m at h. C O ] 1 9 D ec 1 99 5 An Explicit Formula for the Number of Solutions of X = 0 in Triangular Matrices Over a Finite Field Shalosh B. EKHAD and Doron ZEILBERGER Abstract: We prove an explicit formula for the number of n × n upper triangular matrices, over GF (q), whose square is the zero matrix. This formula was recently conjectured by Sasha Kirillov and Ann...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997